DISCRETE WAVELET TRANSFORMATIONS. 2nd Edition

DISCRETE WAVELET TRANSFORMATIONS. 2nd Edition

An elementary approach with applications

Patrick J. Van Fleet (University of St. Thomas, St. Paul, MN, USA)

Hoboken, NJ, USA. JOHN WILEY. ISBN 9781118979273. 624 págs. Junio de 2019. Encuadernado

PVP EUR 123,00 (4% IVA incluido)

La nueva edición de Discrete Wavelet Transformations continúa guiando a los lectores a través de los conceptos abstractos de la teoría de ondícula utilizando el enfoque práctico y basado en la aplicación del Dr. Van Fleet, que refleja cómo los matemáticos construyen soluciones para los desafíos fuera del aula. Al introducir los filtros Haar, ortogonales y biortogonales sin el uso de la serie de Fourier, Van Fleet permite a su audiencia conectar conceptos directamente a aplicaciones del mundo real en un punto anterior a otras publicaciones en el campo. La segunda edición analiza las nuevas aplicaciones, incluida la segmentación de imágenes y la especificación de compresión de huellas dactilares del FBI.

 

Extracto del índice:

Chapter 1: Introduction: Why Wavelets?

Chapter 2: Vectors and Matrices

2.1 Vectors, Inner Products, and Norms

Problems

2.2 Basic Matrix Theory

Problems

2.3 Block Matrix Arithmetic

Problems

2.4 Convolution and Filters

Problems

Chapter 3: An Introduction to Digital Images

3.1 The Basics of Grayscale Digital Images

Problems

Computer Lab

3.2 Color Images and Color Spaces

Problems

Computer Lab

3.3 Huffman Coding

Problems

Computer Lab

3.4 Qualitative and Quantitative Measures

Problems

Computer Labs

Chapter 4: The Haar Wavelet Transformation

4.1 Constructing the Haar Wavelet Transformation

Problems

Computer Lab

4.2 Iterating the Process

Problems

Computer Lab

4.3 The Two–Dimensional Haar Wavelet Transformation

Problems

Computer Lab

4.4 Applications: Image Compression and Edge Detection

Problems

Computer Labs

Chapter 5: Daubechies Wavelet Transformations

5.1 Daubechies Filter of Length Four

Problems

Computer Lab

5.2 Daubechies Filter of Length Six

Problems

Computer Lab

5.3 Daubechies Filters of Even Length

Problems

Computer Lab

Chapter 6: Wavelet Shrinkage: An Application to Denoising

6.1 An Overview of Wavelet Shrinkage

Problems

Computer Lab

6.2 VisuShrink

Problems

Computer Lab

6.3 SureShrink

Problems

Computer Labs

Chapter 7: Biorthogonal Wavelet Transformations

7.1 The (5; 3) Biorthogonal Spline Filter Pair

Problems

Computer Lab

7.2 The (8; 4) Biorthogonal Spline Filter Pair

Problems

Computer Lab

7.3 Symmetry and Boundary Effects

Problems

Computer Lab

7.4 Image Compression and Image Pansharpening

Computer Lab

Chapter 8: Complex Numbers and Fourier Series

8.1 The Complex Plane and Arithmetic

Problems

8.2 Fourier Series

Problems

8.3 Filters and Convolution in the Fourier Domain

Problems

Chapter 9: Filter Construction in the Fourier Domain

9.1 Filter Construction in the Fourier Domain

Problems

9.2 Daubechies Filters

Problems

9.3 Coiflet Filters

Problems

Computer Lab

9.4 Biorthogonal Spline Filter Pairs

Problems

Computer Lab

9.5 The Cohen–Daubechies–Feauveau 9/7 Filter

Problems

Computer Lab

Chapter 10: Wavelet Packets

10.1 The Wavelet Packet Transform

Problems

10.2 Cost Functions and the Best Basis Algorithm

Problems

10.3 The FBI Fingerprint Compression Specification

Computer Lab

Chapter 11: Lifting

11.1 The LeGall Wavelet Transform

Problems

Computer Lab

11.2 Z–Transforms and Laurent Polynomials

Problems

11.3 A General Construction of the Lifting Method

Problems

11.4 The Lifting Method – Examples

Problems

Computer Lab

Chapter 12: The JPEG2000 Image Compression Standard

12.1 An Overview of JPEG

Problems

12.2 The Basic JPEG2000 Algorithm

Problems

12.3 Examples

Appendix A: Basic Statistics

A.1Descriptive Statistics

Problems

A.2 Sample Spaces, Probability, and Random Variables

Problems

A.3 Continuous Distributions

Problems

A.4 Expectation

Problems

A.5 Two Special Distributions

Problems

References

Index

 

 

Comments are closed.